Trigonometry: A 12.4 m flagpole is placed on top of a tall building

A 12.4 m flagpole is placed on top of a tall building. An observer, standing directly in front of the building and flagpole, measures the angle of elevation to the bottom of the flagpole to be 42.5 ◦ and to the top of the flagpole to be 48.2 ◦ . Determine the height of the building, to the nearest meter.

Solution:

Represent the given information on a diagram. Let the height of the building be h and the distance out from the building to the observer be d.





In 4BCD, h d = tan 42.5 ◦ and in 4ACD, h+12.4 d = tan 48.2 ◦ . Rearranging, h = d(tan 42.5 ◦ ) and h + 12.4 = d(tan 48.2 ◦ ). Substitute for h in the second equation,

                  d(tan 42.5 ◦ ) + 12.4 = d(tan 48.2 ◦ )

                                           12.4 = d(tan 48.2 ◦ ) − d(tan 42.5 ◦ )
                                           12.4 = d(tan 48.2 ◦ − tan 42.5 ◦ )
 12.4 ÷ (tan 48.2 ◦ − tan 42.5 ◦ ) = d
                                        61.35 ˙= d
                                         But h = d(tan 42.5 ◦ ) ˙= 56.2


Therefore the height of the building is 56 m.

Popular Posts